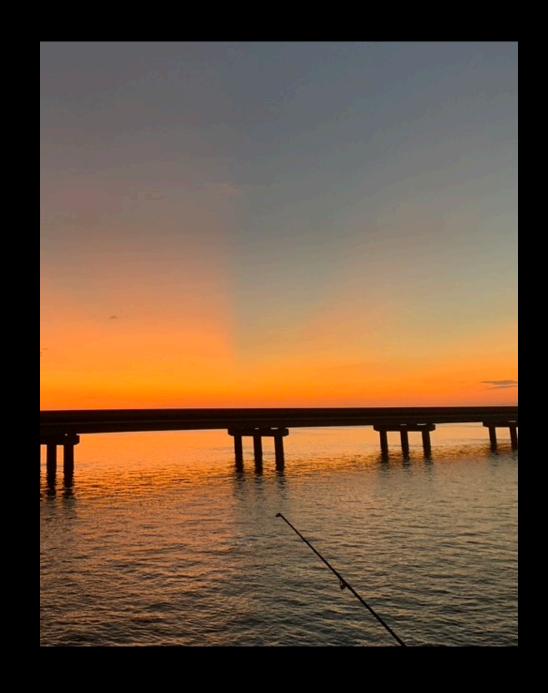
IIBA Columbus ACOM 2024

Raising Your Game Using Model Thinking



Matt Badgley

I'm a person that really enjoys helping others make great software, have fun, and discover new ways to innovate. By the way, I like to also hang with my BFFW, fish, do anything with my dogs, enjoy beer, and smoke meat.

I work as a Lean-Agile Coach, Trainer, Leadership Coach, constant learner, and frequent screw-up.

matt@bluhound.com @bluhoundhowling www.bluhound.com www.linkedin.com/in/mattbadgley

Let's Try Something

Instructions:

- 1. If you have a LinkedIn account, ask the person sitting next to you for their LinkedIn account name.
- 2. How many degrees of separation are they?
- 3. Repeat this for as many people around you.
- 4. Count how many people are 1st, 2nd, and 3rd

If you want to check mine, my LinkedIn account is: https://www.linkedin.com/in/mattbadgley/

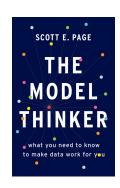
Six Degrees of Separation

Network Model based on Stanley Milgram's 1960's experiment which demonstrated that most people are connected by six-degrees of separation or less.

Formula Example:

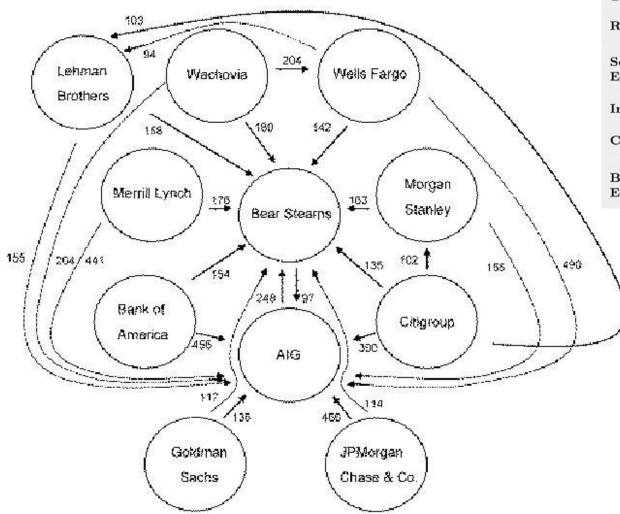
- 100 clique friends (C), all of whom are friends with one another, and 20 random friends (R) who have no friends in common with the node.
 - Degree One: C+R = 120
 - Degree Two: CR+RC+RR = 4400
 - Degree Three: CRC+CRR+RCR+RRC+RRR = 328,000
 - Degree Four: 17,360,000¹³
 - Degree Five: > 1 billion
 - Degree Six: > 20 billion

What is Model Thinking?


Models are formal structures represented in mathematics and diagrams that help us to understand the world.

"Models help us simplify or make sense of a complex world"

"All models are wrong"



Types of Models

Maxwell's Equations $\nabla \cdot \mathbf{E} = 0$ J.C. Maxwell, 1865 $\nabla \cdot \mathbf{H} = 0$ $\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t}$ $\nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial E}{\partial t}$ dS > 0L. Boltzmann, 1874 Second Law of Thermodynamics Relativity $E = mc^2$ Einstein, 1905 $i\hbar \frac{\partial}{\partial t}\Psi = H\Psi$ Schrodinger's E. Schrodinger, 1927 Equation $H = -\sum p(x)\log p(x)$ Information Theory C. Shannon, 1949 $x_{t+1} = kx_t(1 - x_t)$ Chaos Theory Robert May, 1975 $\frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} + \frac{\partial V}{\partial t} - rV = 0 \quad \text{F. Black, M. Scholes, 1990}$ Black-Scholes Equation

Sources: Bloomberg, L.P.; Primark Ostastream; and IMF staff estimates.

Note: This diagram presents the conditional co-risk estimates between pairs of selected financial institutions. only co-risk estimates above or equal to 90 percent are depicted.

What do Models do for us?

Reason To identify conditions and deduce logical implications

Explain To provide testable explanations to empirical phenomena

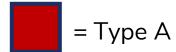
Design To choose features of institutions, policies, and rules

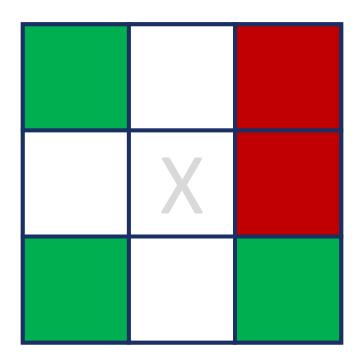
Communicate To relate knowledge and understandings

Act To guide policy choices and strategic actions

Predict To make numerical and categorical predictions of future and unknown phenomena

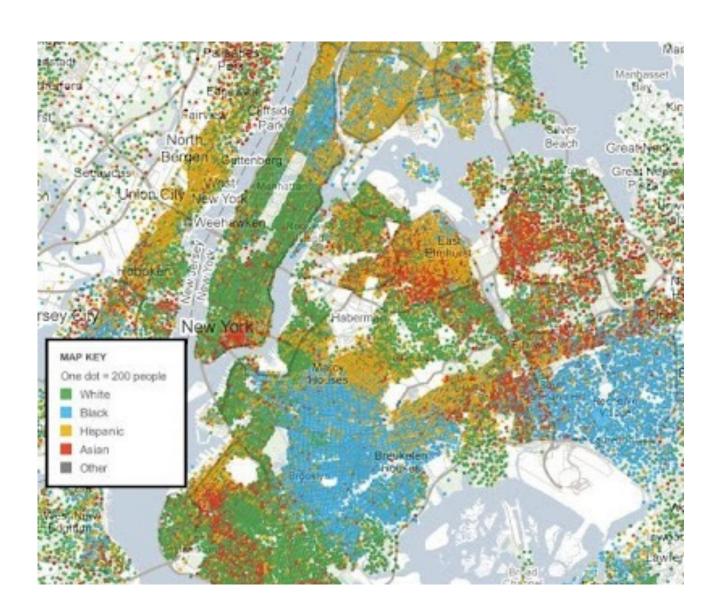
Explore To investigate possibilities and hypotheticals


Exercise

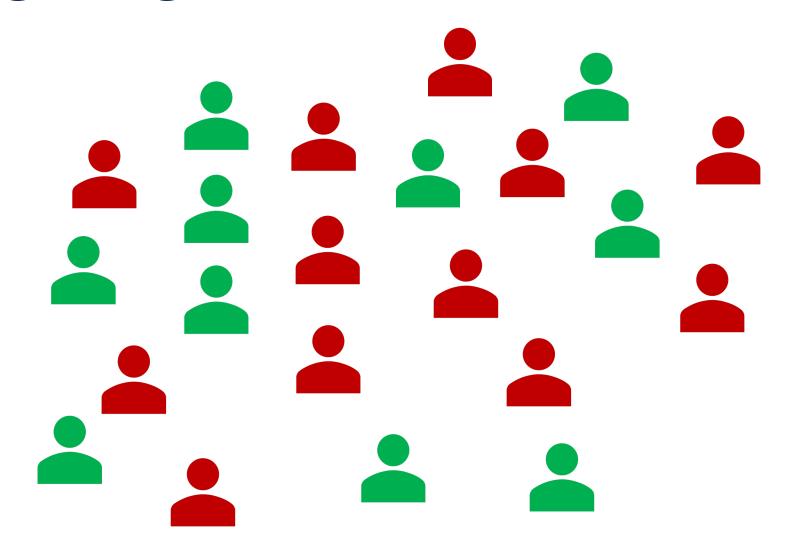

- 9 Volunteers to stand on one of the blank pieces of paper
- Pick a color, between "Red" and "Green" paper hold the one you picked above your head

Example - Schelling's Segregation Model

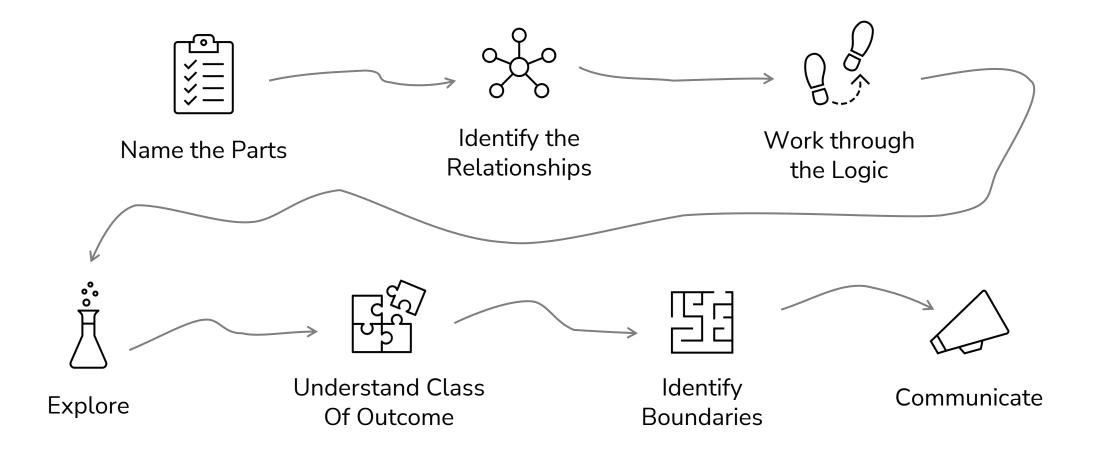
Individuals, each of whom has a type A or B, are randomly arranged on a checkerboard with room for open spaces. Each person has a tolerance threshold, and relocates to a random new location if the percentage of people of their same type drops below their threshold.



Threshold = 33%



Example – Schelling's Segregation Model



Enabling Change

Steps to Construct a Model

Use Multiple Models

your team gets buried with unplanned work? Does it seem like

What's the impact of unplanned work?

Risk Threshold is > 6 unplanned

Sprint	# of Planned	# of Unplanned	% of Planned Done	Goals Met
1	25	12 48%	60%	No
2	27	8 29%	75%	No
3	24	4 17%	85%	Yes
4	26	9 35%	80%	No
5	28	6 21%	82%	Yes
6	25	3 12%	88%	Yes
7	23	7 30%	78%	No

Risk Threshold is > 21% unplanned/planned

Probability of Goals met is 75% when Planned Done 8X%

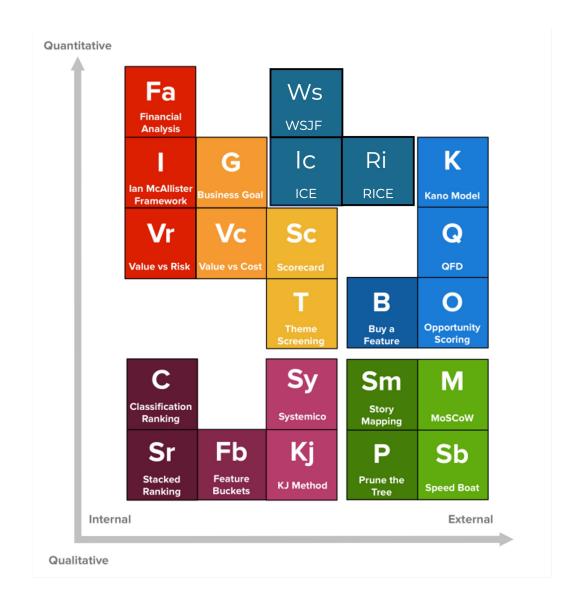
Understand the Unplanned

- Step 1 Define Categories of Unplanned Work
- Step 2 Track the Unplanned Work
- Step 3 Understand the driver of the chaos

	45%	14%	14% Uncovered	27%
	Incidents	Late Feedback	Requirements	Help Requests
Sprint 1	6	1	2	3
Sprint 2	3	3	0	2
Sprint 3	2	0	0	1
Sprint 4	4	2	2	1
Sprint 5	2	0	2	2
Sprint 6	2	0	0	1
Sprint 7	3	1	1	2

organization struggle with prioritization?

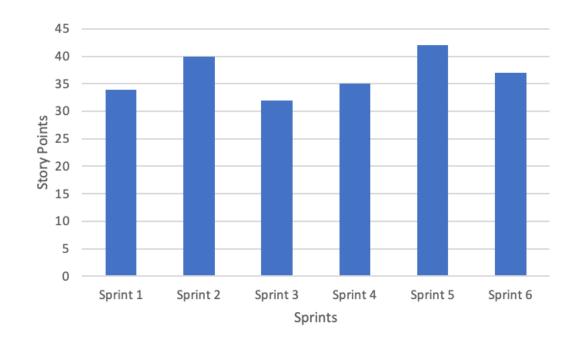
Let's Start with the HIPPO


Preference Models

Condorcet Jury Theorem Transitive vs. Non-Transitive

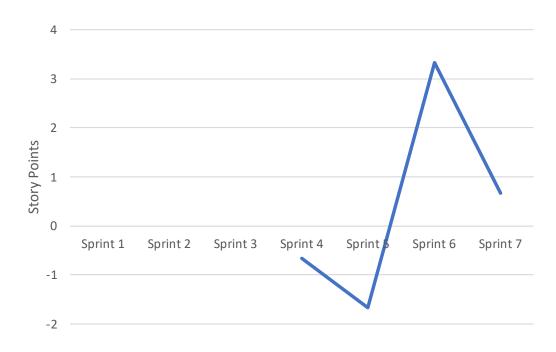
Attribute	Feature 1	Feature 2	Feature 3	HIPPO
Addresses Compliance	1 .2	8 1.6	3 .6	20%
Improves Call Center Response Time	13 3.9	⁵ 1.5	8 2.4	30%
Addresses Quality of Service	5 .75	8 1.2	13 1.9 5	5 15%
Enables Revenue	8 2.4	ъ. е	5 1.5	30%
Creates New Ways of Working	8 .4	5 .15	3 .15	5%

What are other models that exist?


ea: every ce you

Velocity

At the end of each iteration, the team adds up effort estimates associated with user stories that were completed during that iteration. This total is called velocity.


speed = distance/time

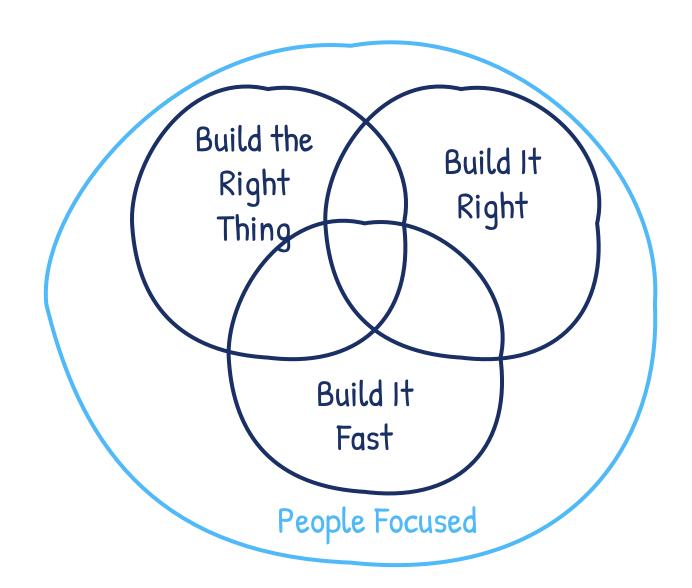
Really, then what is velocity?

Velocity is a vector measurement of the rate of motion of an object and the direction in which it is moving.

average velocity = Δ speed / Δ time

Even Better Velocity for Planning

Using the Central Limit Theorem ... Step 1 – Calculate the Mean 37 Step 2 – Calculate the Standard Deviation (σ) Step 3 – Plot normal distribution (optional) 33 40 68% 30 43 95% 36 38 -2σ



Is Predictability simply a long word?

Practice Metrics Safely

mattbadgley/

Thank You

If you would like this presentation, shoot me an email at matt@bluhound.com

