
8/14/2019 Spectacle

localhost:3000/#/?export 1/11

LINK TO MY DOCKERHUB REGISTRY
Hit Your Right Arrow To Begin!

CAPTURING REQUIREMENTS FOR CONTAINERS

https://cloud.docker.com/u/041284/repository/docker/041284/first


8/14/2019 Spectacle

localhost:3000/#/?export 2/11

AGENDA
1. What are Containers and Why use them?

2. Orchasteration with Kubernetes
3. MONOLITH VERSUS MICROSERVICES

4. MICROSERVICES: ARCHITECTURE TO SUPPORT AGILE
5. HOW ARE REQUIREMENTS NEW WITH

CONTAINERIZATION
6. SECURITY REQUIREMENT WITH CONTAINERS

7. REFERENCES



8/14/2019 Spectacle

localhost:3000/#/?export 3/11

WHAT ARE CONTAINERS ?
Containers o�er a logical packaging mechanism in which applications can be

abstracted from the environment in which they actually run.



8/14/2019 Spectacle

localhost:3000/#/?export 4/11

...SO WHY ARE WE TALKING ABOUT IT ?

We can get rid of - "I don't know why it's not
working for you ?"

GREAT FOR SERVICE BASED ARCHITECTURE
Containers o�ers variety of Performance bene�ts



8/14/2019 Spectacle

localhost:3000/#/?export 5/11

Orchestration

◦Running
containers

across many
di�erent
machines

◦Scaling up or
down by adding

or removing
containers when
demand changes

◦Distributing
load

between the
containers

◦Launching
new

containers
on di�erent
machines if
something

fails
◦Running

containers
across many

di�erent
machines

◦Scaling up or
down by adding

or removing
containers when
demand changes

◦Distributing
load

between the
containers

◦Launching
new

containers
on di�erent
machines if
something

fails



8/14/2019 Spectacle

localhost:3000/#/?export 6/11

Application is too large and complex.
Impact of a change is usually not very well understood which leads

to do extensive manual testing.
Another problem with monolithic applications is reliability. Bug in

any module (e.g. memory leak) can potentially bring down the entire
process.

CHALLENGES WITH MONOLITHIC ARCHITECTURE



8/14/2019 Spectacle

localhost:3000/#/?export 7/11

Split your application into a set of smaller, interconnected services
instead of building a single monolithic application.

These services are built around business capabilities and are
independently deployable .

Services communicate with each other by using well-de�ned APIs.
Internal implementation of each service are hidden from other services.

ENTER MICROSERVICES



8/14/2019 Spectacle

localhost:3000/#/?export 8/11

AGILE INTEGRATION
1) IT WANTS TO BE MORE RESPONSIVE TO THE CHANGES IN
THE OVERALL TECH INDUSTRY; THE DRIVING NEED TO MOVE

FASTER.
2) BUSINESS COMPONENTS OR SERVICES TOGETHER

QUICKLY AND RESPOND TO MARKET DEMANDS
3) USE OF SMALLER TEAMS AND AN INCREMENTAL

APPROACH
4) INTEGRATION UP FRONT



8/14/2019 Spectacle

localhost:3000/#/?export 9/11

HOW ARE REQUIREMENTS NEW WITH
CONTAINERIZATION?

1) ORGANIZATIONS ARE ORGANIZING THEIR DEVELOPMENT
TEAMS DIFFERENTLY AND THEY NEED TO GET BUSINESS

ELEMENTS INVOLVED.
2) MICROSERVICES ARE ORGANIZED AROUND BUSINESS

CAPABILITIES
3) APIS IS NOW CONSIDERED THE THIRD PILLAR FOR AGILE.

4) SCALIBILITY AND PERFORMANCE IS A LOT DIFFERENT
WITH CONTAINERS



8/14/2019 Spectacle

localhost:3000/#/?export 10/11

CONTAINERS ARE HERE , NOW HOW DO
WE SECURE THEM?

1) INTEGRATE STATIC APPLICATION SECURITY TESTING INTO
THE BUILD PROCESS .

2) ROBUST, CENTRALIZED AUTHENTICATION AND
AUTHORIZATION POLICIES FOR ACCESS.

3) ENCRYPT ALL DATA AT REST. FULL DISC ENCRYPTION
4) MAKE SURE THAT YOUR PLATFORM IS MOSTLY

"ATOMIC".



8/14/2019 Spectacle

localhost:3000/#/?export 11/11

DESIGNED BY - TARANJEET KAUR


